Register | Login

International Research Journal of Pure and Applied Chemistry

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Printed Hard copy
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2023 - Volume 24 [Issue 1]
  4. Original Research Article

Author Guidelines


Submit Manuscript


Editorial Board Member


Membership


Subscription


Electrochemical Determination of Hg2+ on a Poly (Eriochrome Blue Black R) Modified Carbon Paste Electrode

  •   Abdoulkadri Ayouba Mahamane
  •   Abdoulaye Idrissa Kalidou
  •   Hassane Adamou
  •   Bachir Mijitaba Sahirou
  •   Alain Walcarius
  •   Rabani Adamou

International Research Journal of Pure and Applied Chemistry, Volume 24, Issue 1, Page 49-64
DOI: 10.9734/irjpac/2023/v24i1801
Published: 28 February 2023

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


In this work a new, simple, fast, and efficient electrochemical approach for the determination of inorganic mercury (Hg2+) using the differential pulse anodic stripping voltammetry (DPASV) technique was presented. This is achieved by modifying the surface of a carbon paste electrode by electropolymerization of Eriochrome blue black R. First, the behavior of Hg2+ on the modified electrode is studied by cyclic voltammetry and electrochemical impedance spectroscopy, to evaluate performance and understand the phenomena that take place on its surface. DPASV is then used to optimize the sensor in HClO4 medium. After optimization, a linear calibration graph was obtained in the concentration range of 1x10-9 to 9x10-9 mol.L-1 with correlation coefficient R2= 0.9975%, the limit of detection (LOD) and the limit of quantification (LOQ) obtained are respectively 3.23x10-10 mol.L-1 and 1.07x10-9 mol.L-1. The relative standard deviation (RSD) for 7 measurements is 3.07%, which proves that this sensor is reproducible. Finally, this method has been successfully applied in real samples of water and the results obtained are satisfactory because the recovery rates of Hg2+ vary from 99.2 to 100.1%.

Keywords:
  • Carbon paste electrode
  • poly (eriochrome blue black R)
  • inorganic mercury(II)`
  • differential pulse anodic stripping voltammetry
  • Full Article – PDF
  • Review History

How to Cite

Mahamane , A. A., Kalidou , A. I., Adamou , H., Sahirou , B. M., Walcarius , A., & Adamou , R. (2023). Electrochemical Determination of Hg2+ on a Poly (Eriochrome Blue Black R) Modified Carbon Paste Electrode. International Research Journal of Pure and Applied Chemistry, 24(1), 49–64. https://doi.org/10.9734/irjpac/2023/v24i1801
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Liao Y, Li J, Li S, Han B, Wu P, Deng N et al. Inorganic mercury induces liver oxidative stress injury in quails by inhibiting Akt/Nrf2 signal pathway, Inorg. Chem. Commun. 2022;142:109603. DOI:https://doi.org/10.1016/j.inoche.2022.109603

Ganguly J, Kulshreshtha D, Jog M. Mercury and Movement Disorders: The Toxic Legacy Continues. Can. J. Neurol. Sci. 2022;49:493 – 501. DOI: https://doi.org/10.1017/cjn.2021.146

Nunes PBdO, Ferreira MKM, Frazão DR, Bittencourt LO, Chemelo VdS., Silva MCF et al. Effects of inorganic mercury exposure in the alveolar bone of rats: an approach of qualitative and morphological aspects. PeerJ. 2022;10:12573. DOI: https://1.doi.org/10.7717/peerj.12573

Li S, Han B, Wu P, Yang Q, Wang X, Li J et al. Effect of inorganic mercury exposure on reproductive system of male mice: Immunosuppression and fibrosis in testis, Environ. Toxicol. 2022;37:69-78. DOI:https://onlinelibrary.wiley.com/doi/epdf/10.1002/tox.23378

Han B, Lv Z, Han X, Li S, Han B, Yang Q et al. Harmful Effects of Inorganic Mercury Exposure on Kidney Cells: Mitochondrial Dynamics Disorder and Excessive Oxidative Stress. Biol. Trace Elem. Res. 2022; 200:1591–1597. DOI: https://doi.org/10.1007/s12011-021-02766-3

Tian J, Zhu Y. Rapid Determination of Mercury Ions in Environmental Water Based on an N-Rich Covalent Organic Framework Potential Sensor. Int. J. Chem. Eng. 2022; 2022:3112316. DOI: https://1.doi.org/10.1155/2022/3112316

Cossa D, Knoery J, Bănaru D, Harmelin-Vivien M, Sonke JE, Hedgecock IM et al. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. Environ. Sci. Technol. 2022;56(7):3840–3862. DOI: https://doi.org/10.1021/acs.est.1c03044

Che S, Yin L, Fan Y, Shou Q, Zhou C, Fu H, She Y. An ionic liquid-based ratio fluorescent sensor for real-time visual monitoring of trace Hg2+. Sens. Actuators B Chem. 2022;360 (1):131588. DOI:https://doi.org/10.1016/j.snb.2022.131588

Wang Y, Zhu A, Fang Y, Fan C, Guo Y, Tan Z, et al. Dithizone-functionalized C18 online solid-phase extraction-HPLC-ICP-MS for speciation of ultra-trace organic and inorganic mercury in cereals and environmental samples. J. Environ. Sci. 2022;115:403–410. DOI:https://doi.org/10.1016/j.jes.2021.08.013

Yang H, Jian R, Liao J, Cui J, Fang P, Zou Z, Huang K. Recent development of non-chromatographic atomic spectrometry for speciation analysis of mercury. Appl. Spectrosc. Rev. 2021;57:441-460 DOI:https://doi.org/10.1080/05704928.2021.1893183

Ali S, Mansha M, Baig N, Khan SA. Cost-Effective and Selective Fluorescent Chemosensor (Pyr-NH@SiO2 NPs) for Mercury Detection in Seawater. Nanomaterials. 2022;12:1249.

DOI: https://doi.org/10.3390/nano12081249

Liu Q, Wu F, Di H, Bi Y, Meng M, Liu D et al. A novel SERS biosensor for ultrasensitive detection of mercury(II) in complex biological samples. Sens. Actuators B Chem. 2022; 351:130934. DOI:https://doi.org/10.1016/j.snb.2021.130934

Mahamane AA, Despas C, Adamou R, Walcarius A. Carbon paste electrode modified with 5-Br-PADAP as a new electrochemical sensor for the detection of inorganic mercury(II). J. Mater. Environ. Sci., 2022;13(01):54-69. Available:https://www.jmaterenvironsci.com/Document/vol13/vol13_N1/JMES-2022-13005-Mahamane.pdf

Tajik S, Beitollahi H, Nejad FG, Dourandish Z, Khalilzadeh MA, H. W. Jang et al. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind. Eng. Chem. Res. 2021;60(03):1112−1136. DOI: https://doi.org/10.1021/acs.iecr.0c04952

Somerset V, Leaner J, Mason R, Iwuoha E, Morrin A. Development and application of a poly(2,2′-dithiodianiline) (PDTDA)-coated screen-printed carbon electrode in inorganic mercury determination. Electrochim. Acta. 2010;55 (14):4240-4246. DOI:https://doi.org/10.1016/j.electacta.2009.01.029

Guha KS, Mascarenhas RJ, Thomas T, D’Souza OJ. Differential pulse anodic stripping voltammetric determination of Hg2+ at poly(Eriochrome Black T)-modified carbon paste electrode. Springer. 2014; 20:849–856. DOI: https://doi.org/10.1007/s11581-013-1040-9

Yao H, Sun Y, Lin X, Tang Y, Liu A, Li G et al. Selective Determination of Epinephrine in the Presence of Ascorbic Acid and Uric Acid by Electrocatalytic Oxidation at Poly(eriochrome Black T) Film-modified Glassy Carbon Electrode. Anal. Sci. 2007;23 (6):677-682. DOI: https://doi.org/10.2116/analsci.23.677

Raril C, Manjunatha JG. Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. J. Anal. Sci. Technol. 2020;11:3. DOI: https://doi.org/10.1186/s40543-019-0194-0

Tamer U, Oymak T, Ertas N. Voltammetric Determination of Mercury(II) at Poly(3-hexylthiophene) Film Electrode. Effect of Halide Ions. Electroanalysis. 2007;19:2565 – 2570. DOI: https://doi.org/10.1002/elan.200704013

Zuo Y, Xua J, Zhua X, Duana X, Lub L, Gaoa Yet al. Poly(3,4-ethylenedioxythiophene) nanorods/graphene oxide nanocomposite as a new electrode material for the selective electrochemical detection of mercury (II). Synth. Met.. 2016;220:14–19. DOI:https://doi.org/10.1016/j.synthmet.2016.05.022

Geng M, Xu J, Hu S. In situ electrogenerated poly(Eriochrome black T) film and its application in nitric oxide sensor. React. Funct. Polym. 2008;68:1253-1259. DOI:https://doi.org/10.1016/j.reactfunctpolym.2008.06.001

El Attar A, Chemchoub S, Kalan MD, Oularbi L, El Rhazi M. Designing New Material Based on Functionalized Multi-Walled Carbon Nanotubes and Cu(OH)2–Cu2O/Polypyrrole Catalyst for Ethanol Oxidation in Alkaline Medium. Front. Chem. 2022;9:805654. DOI:https://doi.org/10.3389/fchem.2021.805654

Salih FE, Oularbi L, El Halim, Elbasri M, Ouarzane A, El Rhazi M. Conducting Polymer/Ionic Liquid Composite Modified Carbon Paste Electrode for the Determination of Carbaryl in Real Samples. Electroanalysis. 2018;30(8):1855-1864. DOI: https://doi.org/10.1002/elan.201800152

Mariame C, El Rhazia M, Adraoui I. Determination of traces of copper by anodic stripping voltammetry at a rotating carbon paste disk electrode modified with poly(1,8-diaminonaphtalene). J. Anal. Chem. 2009;64:632–636. DOI:https://doi.org/10.1134/S1061934809060161

Dueraning A, Kanatharana P, Thavarungkul P, Limbut W. An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection. Electrochimi. Acta, 2016;221:133-143. DOI:https://doi.org/10.1016/j.electacta.2016.10.069

Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A. Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sens. Actuators B. 2013;186:451–460. DOI:https://doi.org/10.1016/j.snb.2013.06.051

Mikkelsen Ø, Schrøder KH. Sensitivity Enhancements in Stripping Voltammetry from Exposure to Low Frequency Sound. Electroanalysis.1999;11:401-405. DOI: https://doi.org/10.1002/(SICI)1521-4109(199905)11:6<401::AID-ELAN401>3.0.CO;2-6

Attar T, Harek Y, Larabi L. Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry. J. Korean Chem. Soc. 2013;57(5): 568-573. DOI:https://doi.org/10.5012/jkcs.2013.57.5.568

Moutcine A, Chtaini A. Electrochemical determination of trace mercury in water sample using EDTA-CPE modified electrode. Sens. Bio-Sens. Res.. 2018;17: 30-35. DOI:https://doi.org/10.1016/j.sbsr.2018.01.002

Hassan RYA, Kamel MS, Hassan HNA, Khaled E. Voltammetric determination of mercury in biological samples using crown ether/multiwalled carbon nanotube-based sensor. J. Electroanal. Chem., 2015;759: 101-106. DOI:https://doi.org/10.1016/j.jelechem.2015.10.039

Isaad J, El Achari A. Colorimetric and fluorescent probe based on coumarin for sequential sensing of mercury (II) and cyanide ions in aqueous solutions. J. Lumin.2022;243:118668. DOI:https://doi.org/10.1016/j.jlumin.2021.118668

  • Abstract View: 38 times
    PDF Download: 30 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission

Information

  • For Readers
  • For Authors
  • For Librarians

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo


Copyright © 2010 - 2023 International Research Journal of Pure and Applied Chemistry. All rights reserved.