Register | Login

International Research Journal of Pure and Applied Chemistry

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Printed Hard copy
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2023 - Volume 24 [Issue 1]
  4. Original Research Article

Author Guidelines


Submit Manuscript


Editorial Board Member


Membership


Subscription


Phytochemical Profiling Using GC-MS, Antioxidant and Antidepressant Properties of Methanolic Leaf Extract of Clerodendrum polycephalum Baker in Swiss Mice

  •   Johnson Oshiobugie Momoh
  •   Taiwo Toyin Oshin

International Research Journal of Pure and Applied Chemistry, Volume 24, Issue 1, Page 65-87
DOI: 10.9734/irjpac/2023/v24i1802
Published: 2 March 2023

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Background: Clerodendrum polycephalum Baker is used by the traditional people in southwest Nigeria for arresting bleeding from cuts and treating bacterial infections especially wound infection without scientific proof of its efficacy. The plant was investigated in animal models for its antidepressant activity in Swiss mice.

Methods: The GC-MS, phytochemical analyses, antioxidant activities, tail suspension test, forced swimming test and oxidative stress parameters were determined using standard procedures.

Results: A total of 27 compounds were identified consisting of five prominent compounds and 22 minor compounds. The five prominent compounds constitute 63.99% of the Clerodendrum polycephalum Baker plant. The five major compounds and their percentage abundance are: Bicyclo[3.1.1]heptane, 2,6,6-trime thyl-  (21.36%), Squalene (18.69%), Neophytadiene (10.71%), 2-Tridecanol (6.66%) and 2-Dodecanol (6.57%). The phytochemicals present in the methanolic leaf extract of C polycephalum are: flavonoids, steroid, tannins, saponins, anthraquinones, alkaloids, terpenoids, anthocyanin, phenolic compounds and carbohydrate The extract has the ability to scavenge DPPH activity and it contains other components like: total proanthocyanidine (1.369±0.184), flavonoids (2.4%), β-Carotene (0.1336± 0.45 µg) and lycopene (0.0340±0.053µg/g). The antidepressant result showed robust and dose-dependent antidepressant-like activity of Clerodendrum polycephalum Baker. There are statistically significant (P<0.0001) reductions in the duration of immobility time both in the tail suspension and forced swimming test. Clerodendrum polycephalum extract produced significant (P<0.0001-0.0044) increase in total protein of the plasma, liver and kidney homogenate of the treated groups (Group C, D and E) compared to the untreated mice in group B. The level of antioxidant parameter such as catalase, and superoxide dismutase were significant increased (P<0.0001) and MDA values significantly reduce (P<0.0001-0.0014) in the treated groups administered with the extract and imipramine compared to the untreated mice in group B.   

Conclusion: The results show that methanolic leaf extract of the Clerodendrum polycephalum Baker has potential antioxidant and antidepressant activities and further studies should be conducted to identify, isolate and evaluate its potential active compound responsible for such effect.

Keywords:
  • Antidepressant
  • Clerodendrum polycephalum baker
  • depression
  • GC-MS
  • FST
  • TST
  • Full Article – PDF
  • Review History

How to Cite

Momoh , J. O., & Oshin , T. T. (2023). Phytochemical Profiling Using GC-MS, Antioxidant and Antidepressant Properties of Methanolic Leaf Extract of Clerodendrum polycephalum Baker in Swiss Mice. International Research Journal of Pure and Applied Chemistry, 24(1), 65–87. https://doi.org/10.9734/irjpac/2023/v24i1802
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Mojisola C. Cyril-Olutayo, Francis A. Adewoyin, Ayodele O. Ogunyemi. Evaluation of the effects of Clerodendrum polycephalum baker leaf extracts on sickle red blood cells. EJMP. 2018;24(1):1-10. Article no.EJMP.41202. DOI: 10.9734/EJMP/2018/41202.

Henry O. Egharevba, Jemilat A. Ibrahim, Grace Ezeh. Phytochemical, Pharmacognostic and Microscopic Analyses of the Leaves of Clerodendrum polycephalum Baker. Journal of Applied Pharmaceutical Science. 2015;5 (7):060-063. DOI: 10.7324/JAPS.2015.50710.

Adegoke EA, Akinsanya A, Naqui SHZ. Studies of Nigerian medicinal plants 1. A preliminary survey of plant Alkaloid. J. West Africa Sci. Assoc. 1968;13:13-33.

Singh VP, Sharma SK, Khare VS. Medicinal plants from Ujjain district Madhya. Prades. Part II. Indian Drgs Pharm. Ind. 1980;5:7-12.

Wang H, Harrison SP, Prentice IC, Yang Y, Bai F, Togashi HF, ang M, Zh ou S, Ni J. The China plant trait database: Towards a comprehensive regional compilation of functional traits for land plants. Ecology. 2018;99(2).

Longe AO, Momoh JO, Asoro II. Gas chromatography-mass spectrometry (GC-MS) analysis of phytocomponents in the root, stem bark and leaf of Vernonia amygdalin. World J Pharm Res. 2017; 6(2):35-49. DOI: 10.20959/wjpr20172-7701.

Oshin TT, Rasaq AK, Oluwafemi F, Momoh JO. Histological and cytotoxic evaluation of Carica papaya seed oil and its potential biodiesel feedstock. J Ecol Eng. 2021;13(2):43-52. DOI: 10.5897/JECE2020.0468.

Momoh JO, Damazio OA, Oyegbami OM. GC–MS analysis and antimalarial activity of methanolic leaf extract of Carica papaya against Plasmodium berghei NK65 infection in Swiss mice. ARRB. 2020; 35(12):183-197.Article no.ARRB.60062. DOI: 10.9734/ARRB/2020/v35i1230323.

Aderele OR, Rasaq AK, Momoh JO. Phytochemical screening, mathematical analysis and antimicrobial activity of methanolic seed extract of Hunteria umbellata. Eur J Med Plants. 2020;31(16):1-17.Article no. EJMP.61248 ISSN: 2231-0894. DOI:10.9734/EJMP/2020/v31i1630325.

Momoh JO, Adeniyi MO, Aderele OR. AAS and GC-MS analysis of phytocomponents in the leaf, stem and root of Azadirachta indica A. Juss (Dongoyaro). BJPR. 2017;15(4):1-12. Article no.BJPR.30611. DOI: 10.9734/BJPR/2017/30611.

Momoh JO, Olaleye ON. Biochemical Characterization and Molecular Identification of Escherichia coli Isolate from Abattoir Wastes and Its Susceptibility to ethanolic Root Extract of Azadirachta indica (neem). JAMB. 2022;22(10):31-50. Article no.JAMB .91100. DOI: 10.9734/JAMB/2022/v22i1030502

Momoh JO, Damazio OA, Ajetunmobi AO, Babalola AO, Adekunle OM, Busari NO, Musa AA. Phytochemical analysis and antiplasmodial (curative) activities of methanolic leaf extract of Morinda lucida (Ewe Oruwo) in male Swiss mice infected with Plasmodium berghei NK65. IJTDH. 2019;37(1):1-13:Article no.IJTDH.47956. DOI: 10.9734/IJTDH/2019/v37i130156.

Momoh JO, Manuwa AA, Oshin TT. Phytochemical screening, gas chromatography: mass spectrometry and antidiabetic properties of aqueous extract of ginger (Zingiber officinale) in alloxan: induced diabetic Wistar rats. J Pharmacogn Phytochem. 2022;11(5):11-9. DOI:10.22271/phyto.2022.v11.i5a.14488.

Momoh JO, Manuwa AA, Bankole YO. Phytochemical screening, atomic absorption spectroscopy, GC-MS and antibacterial activities of turmeric (Curcuma longa L.) Rhizome Extracts. JAMB. 2022; 22(9): 116-131. Article no.JAMB.88973. DOI:10.9734/JAMB/2022/v22i930498.

Momoh JO, Olaleye ON. Evaluation of secondary metabolites profiling of ginger (Zingiber officinale Roscoe) rhizome using GC-MS and Its antibacterial potential on Staphylococcus aureus and Escherichia coli. MRJI. 2022;32(7):7-31. Article no.MRJI.92461. DOI: 10.9734/MRJI/2022/v32i730397.

Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study. Lancet. 2010;382:1575–86.

Pedersen CB, Mors O, Bertelsen A, Waltoft BL, Agerbo E, McGrath JJ, et al. A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry. 2014;71:573–81.

Kessler RC, Birnbaum H, Bromet E, Hwang I, Sampson N, Shahly V. Age differences in major depression: results from the National Comorbidity Survey Replication (NCS-R). Psychol Med. 2010; 40:225–37.

Eaton WW, Shao H, Nestadt G, Lee BH, Bienvenu OJ, Zandi P. Populationbased study of first onset and chronicity in major depressive disorder. Arch Gen Psychiatry. 2008;65:513–20.

Monroe SM, Harkness KL. Recurrence in major depression: a conceptual analysis. Psychol Rev. 2011;118:655–74.

Yiend J, Paykel E, Merritt R, Lester K, Doll H, Burns T. Long term outcome of primary care depression. J Affec Disord. 2009;118:79–6.

Ustun TB, Ayuso-Mateos JL, Chatterji S, Mathers C, Murray CJ. Global burden of depressive disorders in the year 2000. British J of Psychiatry. 2004;184:386– 92.

Zhang ZJ. Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci. 2004;75:1659–99.

Momoh J, Oluremi NO, Odetunde SK. Antimicrobial and antioxidant properties of aqueous garlic (Allium sativum) extract against Staphylococcus aureus and Pseudomonas aeruginosa. British Microbiol. Res. J. 2016; 14(1):1-11 Article no.BMRJ.24095. DOI: 10.9734/BMRJ/2016/24095.

Momoh JO, Aderele OR, Rasaq AK. Sub-acute and protective effect of Cymbopogon citratus against carbon tetrachloride-induced liver damage, Afr. J. Biochem. 2020;14(4):112-124. DOI: 10.5897/AJBR2019.1064.

Longe AO, Momoh J, Adepoju PA, Akoro SM. Hypoglycemic effects of the methanolic seed extract of Hunteria umbellata (Abeere ) and Its effect on liver, hematological and oxidative stress parameters in alloxan-induced diabetic male albino rats. Int. J. Curr. Res. Biosci. Plant Biol. 2015;2(6):27-34.

Barros L, Ferreira MJ, Queiros B, Ferreira I CFR, Baptista P (2007). Total phenols, ascorbic acid, b-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 100:413–419.

Yong SP, Soon TJ, Seong GK, Buk GH, Patricia AA, Fernando T: Antioxidant and proteins in ethylene-treated kiwifruits. Food Chem. 2008;107:640–648.

Gulcin I. Antioxidant properties of resveratrol: A structure-activity insight. Innov Food Sci Emerg Technol. 2010; 11:210–218.

Gulcin I: Antioxidant activity of L-Adrenaline: An activity-structure insight. Chem Biol Interact. 2009;179(2–3):71–80.

Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology. 1985; 85:367-370.

Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Therapie. 1977; 229:327–336.

Momoh JO, Oshin TT. Severe hepatotoxicity and nephrotoxicity of gasoline (Petrol) on some biochemical parameters in wistar male albino rats. American Journal of Biochemistry. 2015; 5(1):6-14. DOI: 10.5923/j.ajb.20150501.02.

Zou GL, Gui XF, Zhong XL, Zhu YF. Improvements in pyrogallol autoxidation method for the determination of SOD activity. Prog. Biochem. Biophys. 1986;4:71-73.

Momoh JO, Adeniyi MO, Aderele OR. Experimental and mathematical model for the hepatoprotective effect of methanolic extract of Moringa oleifera leaf against CCl4- induced Hepatotoxicity in Sprague Dawley Male Albino Rats. JAMMR. 2018;26(5):1-14. Article no.JAMMR.32062. DOI: 10.9734/JAMMR/2018/32062.

Pollak DD, Rey CE, Monje FJ. Rodent models in depression research: classical strategies and new directions. Ann Med. 2010;42(4):252–64.

Porsolt RD, Brossard G, Hautbois C, Roux S. Models of affective illness: forced swimming and tail suspension tests in rodents. Current Protocols in Pharmacology; 2000.

Kalyani R, Gurupadayya BM, Lodoe C, Hemanth VPR. Determination of phytocomponents and validation of squalene in ethanolic extract of Clerodendrum serratum Linn roots—using gas chromatography-mass spectroscopy and GC-FID technique. Journal of Analytical Science and Technology. 2021;12:31.1-10. DOI:org/10.1186/s40543-021-00286-2.

Md. Toha Z, Haron NH, Md. Kamal NNS, Arsad H. Antioxidant, antiproliferative activities and chemical profile of Clinacanthus nutans leaf extracts processed using two different pre-extraction drying methods. Med Aromat Plants (Los Angeles). 2020;9:361. DOI: 10.35248/2167-0412.20.9.361.

Ghimire GP, Nguyen HT, Koirala N, Sohng JK. Advances in biochemistry and microbial production of squalene and its derivatives. J Microbiol Biotechnol. 2016;26(3):441–51. DOI:https://doi.org/10.4014/jmb.1510.10039.

Popa O, Băbeanu NE, Popa I, Niță S, Dinu-Pârvu CE. Methods for obtaining and determination of squalene from natural sources. Biomed Res Int. 2015;2015: 1–16. DOI:https://doi.org/10.1155/2015/367202.

Lozano-Grande MA, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G, Martínez-Ayala AL. Plant sources, extraction methods, and uses of squalene. Int. J Agron. 2018;2018:1–13. DOI:https://doi.org/10.1155/2018/1829160.

Kim SK, Karadeniz F. Biological importance and applications of squalene and squalane. Adv Food Nutr Res. 2012; 65:223–33. DOI:https://doi.org/10.1016/B9780-12-416003-3.00014-7.

Kohno Y, Egawa Y, Itoh S, Nagaoka S, Takahashi M, Mukai K. Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochim Biophys Acta. 1995;1256(1):52–6. DOI:https://doi.org/10.1016/0005-2760(95)00005-W.

Murakoshi M, Nishino H, Tokuda H, Iwashima A, Okuzumi J, Kitano H. Inhibition by squalene of the tumor promoting activity of 12-O-tetradecanoylphorbol-13-acacetate in mouse skin carcinogenesis. Int. J Cancer. 1992;52(6):950–2. DOI:https://doi.org/10.1002/ijc.2910520620

Amarowicz R. Squalene: a natural antioxidant? Eur J Lipid Sci Technol. 2009; 111(5):411–2. DOI:https://doi.org/10.1002/ejlt.200900102.

Reddy LH, Couvreur P. Squalene: a natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev. 2009;61(15):1412–1426. DOI:https://Doi.org/10.1016/j.addr.2009.09.005.

Tsimidou MZ. Chapter 61. Squalene and Tocopherols in Olive Oil. In: Preedy VR, Watson RS, editors. Olives and olive oil in health and disease prevention: Academic Press, Elsevier; 2010. DOI:https://doi.org/10.1016/b978-0-12-374420-300061-9.

Venkata RB, samuel LA, Pardha SM, Narashimha RB, Naga VKA, Sudhakar M, Radhakrishnan TM. Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian J Pharm Clin Res. 2012;5(2):99-106.

Sasaki K, Othman MB, Ferdousi F, Yoshida M, Watanabe M, Tominaga K, et al. Modulation of the neurotransmitter systems through the anti-inflammatory and antidepressant-like effects of squalene from Aurantiochytrium sp..PLoS ONE. 2019;14(6): e0218923. DOI:https://doi.org/10.1371/journal.pone.0218923.

Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology. 2005;177:245– 255.

Cryan JF, Page ME, Lucki, I. Differential behavioural effects of the antidepressant reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology. 2005; 182:335–344.

Porsolt RD, Bertin A, Jalfre M. Behavioral despair” in rats and mice: strain differences and the effects of imipramine. European Journal of Pharmacology. 1978:51:291–294.

  • Abstract View: 35 times
    PDF Download: 21 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission

Information

  • For Readers
  • For Authors
  • For Librarians

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo


Copyright © 2010 - 2023 International Research Journal of Pure and Applied Chemistry. All rights reserved.