Absolute Configuration Determination of Sugar: A Review of the Different Methods

João Rufino de Freitas Filho *

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Jucleiton José Rufino de Freitas

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Juliano Carlo Rufino de Freitas

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Mônica Freire Belian

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Claudio Augusto Gomes da Camara

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Pedro Ramos de Souza Neto

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Alécia Regina Andresa Silva

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Alex Sandro Nascimento da Silva Filho

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Alice Mariana Souza de Almeida

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Jonatas Tavares da Silva

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Mirian Luzinete da Silva

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Anne Gabrielle Marques da Silva

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Marcilio Martins de Moraes

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Clécio Souza Ramos

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

Ronaldo Nascimento de Oliveira

Departamento de Química, Universidade Federal de Rural de Pernambuco. Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.

*Author to whom correspondence should be addressed.


Abstract

Determination of the stereochemistry of the stereocenter from the aglyconic part of carbohydrates is always one of the most important tasks for chemistry carbohydrates researchers. The absolute configuration (AC), a challenge for synthetic chemists, has attracted much attention. During the past few decades, many techniques and approaches have been developed to determine the AC of carbohydrates, including methods of X-ray diffraction (XRD), electronic and vibrational circular dichroism (ECD and VCD), Raman optical activity (ROA), nuclear magnetic resonance (NMR) utilizing anisotropic effects of chiral derivatizing agents, and quantum chemical calculations. On the other hand, none of the currently applied techniques can dominate AC determination, since they each have their respective limitations corresponding to the different structural features. This review summarizes most of the techniques and methods commonly used in AC assignment of carbohydrates (but specifically glycosides), in the last decades (2000-2023).

GRAPHICAL ABSTRACT

Keywords: Chiral molecules, stereochemical assignment, absolute configuration, glycosides


How to Cite

Filho, J. R. de F., Freitas, J. J. R. de, Freitas, J. C. R. de, Belian, M. F., Camara, C. A. G. da, Neto, P. R. de S., Silva, A. R. A., Filho, A. S. N. da S., Almeida, A. M. S. de, Silva, J. T. da, Silva, M. L. da, Silva, A. G. M. . da, Moraes, M. M. de, Ramos, C. S., & Oliveira, R. N. de. (2024). Absolute Configuration Determination of Sugar: A Review of the Different Methods. International Research Journal of Pure and Applied Chemistry, 25(1), 28–44. https://doi.org/10.9734/irjpac/2024/v25i1843

Downloads

Download data is not yet available.

References

Agirre J. Strategies for carbohydrate model building, refinement and validation. Acta Crystallogr D Struct Biol. 2017;73(2):171-186. DOI: 10.1107/S2059798316016910

Petrovic AG, Navarro-Vázquez A, Alonso-Gómez JL. From relative to absolute configuration of complex natural products: Interplay between NMR, ECD, VCD, and ORD assisted by ab initio calculations. Current Organic Chemistry. 2010;14(15): 1612-1628. DOI: 10.2174/138527210793563215

Sanaullah AFM, Devi P, Hossain T, Sultan SB, Badhon MMU, Hossain ME, Uddin J, Patwary MAM, Kazi M, Matin MM. Rhamnopyranoside-based fatty acid esters as antimicrobials: synthesis, Spectral characterization, PASS, Antimicrobial, and molecular docking Studies. Molecules. 2023;28:986. Available:https://doi.org/10.3390/molecules28030986

Liu J, Ye Q, Liu R, Zhang F, Wen Y, Huang Q, Liu S, Jiang Y. Identification and differentiation of aldose enantiomers in trace natural glycosides by ultra-performance liquid chromatography with diode array detector coupled to quadrupole/time-of-flight mass spectrometry combined with one-pot derivatized protocol. J Chromatogr A. 2022;1683:463521. DOI: 10.1016/j.chroma.2022.463521

Rui Ge, Yuanyuan Zhu, Haifeng Wang, Shuangxi Gu. Methods and application of absolute configuration assignment for chiral compounds[J]. Chinese Journal of Organic Chemistry. 2022;42(2):424-433.

DOI: 10.6023/cjoc202108047

Freedman TB, Cao X, Dukor RK, Nafie LA. Absolute configuration determination of chiral molecules in the solution state using vibrational circular dichroism. Chirality. 2003;15(9):743-758.

DOI: 10.1002/chir.10287

Mándi A, Kurtán T. Applications of OR/ECD/VCD to the structure elucidation of natural products. Natural product reports. 2019;36(6):889-918. DOI: 10.1039/C9NP00002J

Parsons S. Determination of absolute configuration using X-ray diffraction. Tetrahedron: Asymmetry. 2017;28(10): 1304-1313. DOI: 10.1016/j.tetasy.2017.08.018

Brázda P, Palatinus L, Babor M. Electron diffraction determines molecular absolute configuration in a pharmaceutical anocrystal. Science. 2019;364(6441):667-669. DOI: 10.1126/science.aaw2560

Bory A, Shilling AJ, Allen J, Azhari A, Roth A, Shaw LN, Baker BJ. Bioactivity of spongian diterpenoid scaffolds from the Antarctic sponge Dendrilla antarctica. Marine Drugs. 2020;18 (6):327. DOI: 10.3390/md18060327

Puius YA, Stievater TH, Srikrishnan T. Crystal structure, conformation, and absolute configuration of kanamycin A. Carbohydr. Res. 2006;341(17):2871-2875. DOI: 10.1016/j.carres.2006.09.008

Ozcelik A, Pereira-Cameselle R, Poklar Ulrih N, Petrovic AG, Alonso-Gómez JL. Chiroptical sensing: A conceptual introduction. Sensors. 2020;20(4):974. DOI: 10.3390/s20040974

Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ, Bortolini O, Besse, P. Determination of absolute configuration using ab initio calculation of optical rotation. Chirality. 2003;15(S1):S57-S64.

DOI: 10.1002/chir.10270

Krupová M, Kessler J, Bouř P. Recent trends in chiroptical spectroscopy: Theory and applications of vibrational circular dichroism and Raman optical activity. ChemPlusChem. 2020;85(3):561-575. DOI: 10.1002/cplu.202000014

Zhu S, Sun M. Electronic circular dichroism and raman optical activity: principle and applications. Appl. Spectrosc. Rev. 2021; 56(7):553-587. DOI: 10.1080/05704928.2020.1831523

del Río RE, Joseph-Nathan P. Vibrational circular dichroism absolute configuration of natural products from 2015 to 2019. Nat. Prod. Commun. 2021;16(3):1934578X21996166. DOI: 10.1177/1934578X21996166

Monde K, Taniguchi T, Miura N, Nishimura S. Specific band observed in VCD predicts the anomeric configuration of carbohydrates. J. Am. Chem. Soc. 2004; 126(31):9496–9497. DOI: 10.1021/ja048446t

Jimenez DEQ, Barreiro JC, Santos Jr FM, Vasconcellos SP, Porto ALM, Batista Jr JM. Enantioselective ene‐reduction of E‐2‐cyano‐3‐(furan‐2‐yl) acrylamide by marine and terrestrial fungi and absolute configuration of (R)‐2‐cyano‐3‐(furan‐2‐yl) propanamide determined by calculations of electronic circular dichroism (ECD) spectra. Chirality. 2019;31(7):534-542. DOI: 10.1002/chir.23078

Dudek M, Zajac G, Szafraniec E, Wiercigroch E, Tott S, Malek K, Kaczor A, Baranska M. Raman optical activity and raman spectroscopy of carbohydrates in solution. Spectrochim Acta A Mol Biomol Spectrosc. 2019;206:597-612.

DOI: 10.1016/j.saa.2018.08.017

Profant V, Jegorov A, Bouř P, Baumruk V. Absolute configuration determination of a taxol precursor based on Raman optical activity spectra. J. Phys. Chem. B. 2017; 121(7):1544-1551. DOI: 10.1021/acs.jpcb.6b12318

Speciale I, Notaro A, Garcia-Vello P, Di Lorenzo F, Armiento S, Molinaro A, Marchetti R, Silipo A, De Castro C. Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: A hitchhiker's guide. Carbohydrate Polymers. 2022;277:118885. DOI: 10.1016/j.carbpol.2021.118885

Lallana E, Freire F, Seco JM, Quiñoá E, Riguera R. The 1H NMR method for the determination of the absolute configuration of 1,2,3-prim,sec,sec-Triols. Org. Lett. 2006;8(20):4449-4452. DOI: 10.1021/ol0616135

Niebler J, Zhuravlova K, Minceva M, Buettner A. Fragrant sesquiterpene ketones as trace constituents in frankincense volatile oil of Boswellia sacra. J. Nat. Prod. 2016;79(4):1160-1164.

DOI: 10.1021/acs.jnatprod.5b00836

Krivdin LB. Computational NMR of carbohydrates: Theoretical background, Applications, and perspectives. Molecules. 2021;26(9):2450. DOI: 10.3390/molecules26092450

Chhetri BK, Lavoie S, Sweeney-Jones AM, Kubanek J. Recent trends in the structural revision of natural products. Natural product reports. 2018;35(6):514-531. DOI: 10.1039/c8np00011e

Molinski TF. Nanomole-scale natural products discovery. Current opinion in drug discovery & development. 2009;12(2):197-206. PMID: 19333865

Molinski TF. NMR of natural products at the ‘nanomole-scale’. Natural product reports. 2010;27(3):321-329.

DOI:10.1039/b920545b

Stark TD, Matsutomo T, Lösch S, Boakye PA, Balemba OB, Pasilis SP, Hofmann T. Isolation and structure elucidation of highly antioxidative 3,8″-linked biflavanones and flavanone-C-glycosides from Garcinia buchananii Bark. Journal of agricultural and food chemistry. 2012;60(8):2053–2062.DOI: 10.1021/jf205175b

Ferrari J, Terreaux C, Kurtan T, Szikszai-Kiss A, Antus S, Msonthi JD, Hostettmann H. Isolation and on-line LC/CD analysis of 3,8″-linked biflavonoids from Gnidia involucrata. Helv. Chim. Acta. 2003;86 (8): 2768−2778.

DOI:10.1002/hlca.200390226

Stark TD, Salger M, Frank O, Balemba OB, Wakamatsu J, Hofmann T. Antioxidative compounds from Garcinia buchananii stem bark. J Nat Prod. 2015; 78(2):234-40.DOI: 10.1021/np5007873

Aversa MC, Barattucci A, Bonaccorsi P. Glycosulfoxides in carbohydrate chemistry. Tetrahedron. 2008;64(33):7659-7683.

DOI: 10.1016/j.tet.2008.05.051

Zeng J, Liu Y, Chen W, Zhao X, Meng L, Wan Q. Glycosyl sulfoxides in glycosylation reactions.Top Curr Chem (Z). 2018;376:27.DOI: org/10.1007/s41061-018-0205-4

Crich D, Mataka J, Zakharov LN, Rheingold AL, Wink DJ. Stereoselective formation of glycosyl sulfoxides and their subsequent equilibration: Ring inversion of an α-xylopyranosyl sulfoxide dependent on the configuration at sulfur. J. of the American Chemical Society. 2002;124(21): 6028-6036.

DOI: 10.1021/ja0122694

Bujnicki B, Błaszczyk J, Chmielewski M, Drabowicz J. Diastereoisomerically Pure, (S)-O-1,2-O-isopropyli dene-(5-O-α-D-glucofuranosyl) t-butanesulfinate: Synthesis, Crystal structure, absolute configuration and reactivity. Molecules. 2020;25(15):3392. DOI: 10.3390/molecules25153392

Sanhueza CA, Arias AC, Dorta RL, Vázquez JT. Absolute configuration of glycosyl sulfoxides. Tetrahedron: Asymmetry. 2010;21(15):1830-1832. DOI: 10.1016/j.tetasy.2010.06.019

Kong L-Y, Wang P. Determination of the absolute configuration of natural products. Chinese journal of natural medicines. 2013;11(3):193-198. DOI: 10.1016/S1875-5364(13)60016-3

Srivastava RM, Freitas Filho JR, Silva MJ, Melo Souto SC, Carpenter GB, Faustino WM. Synthesis, separation and configuration determination of diastereoisomers of (R, S)-1-methyl-3-[3-(aryl)-1, 2, 4-oxadiazol-5-yl] propyl 2, 3-dideoxy-α-d erythro-hex-2 enopyranosides. Tetrahedron. 2004;60(47):10761-10769. DOI: 10.1016/j.tet.2004.08.075

Marcarino MO, Zanardi MM, Cicetti S, Sarotti AM. NMR calculations with quantum methods: Development of new tools for structural elucidation and beyond. Accounts of Chemical Research. 2020;53(9):1922-1932.

DOI: 10.1021/acs.accounts.0c00365

Costa FLP, de Albuquerque ACF, Fiorot RG, Lião LM, Martorano LH, Mota GVS, Valverde AL, Carneiro JWM, dos Santos Jr FM. Structural characterisation of natural products by means of quantum chemical calculations of NMR parameters: New insights. Org. Chem. Front. 2021;8:2019. DOI: 10.1039/D1QO00034A

Chin YP, See NW, Jenkins ID, Krenske EH. Computational discoveries of reaction mechanisms: recent highlights and emerging challenges Org. Biomol. Chem. 2022;20:2028.

DOI: 10.1039/D1OB02139G

Larrosa I, Romea, P, Urpí F, Balsells D, Vilarrasa, J, Font-Bardia M, Solans X. Unprecedented highly stereoselective α-and β-C-glycosidation with chiral titanium enolates. Organic Letters. 2002;4(26): 4651-4654.

DOI: 10.1021/ol0270226

Gálvez E, Larrosa I, Romea P, Fèlix Urpí F. Stereoselective synthesis of α-and β-C-glycosides by addition of titanium enolates to glycals. Synlett, v. 2009;18:2982-2986. DOI: 10.1055/s-0029-1218279

Gálvez E, Sal M, Romea, P, Urpi, F, Font-Bardia M. Stereoselective synthesis of C-glycosides by addition of titanium enolates from a chiral N-glycolyl thiazolidinethione to glycals. Tetrahedron Letters. 2013;54 (11):1467-1470.

DOI: 10.1016/j.tetlet.2013.01.028

Freitas Filho JR, Freitas JJR, Cottier L, Sinou D, Srivastava RM. Synthesis of 2, 3-unsaturated O-glycosides from optically active alcohols via ferrier rearrangement: Configurational Studies. J. Chilean Chemical Society. 2015;60(4):2646-2649. DOI: 10.4067/S0717-97072015000400004

Costa PLF, Melo VN, Guimarães BM, Shuler M, Pimenta V, Rollin P, Tatibouët A, Oliveira RN. Glycerol carbonate in Ferrier reaction: Access to new enantiopure building blocks to develop glycoglycerolipid analogues. Carbohydrate Research. 2016; 436:1-10. DOI: 10.1016/j.carres.2016.10.009

Batista ANL, Angrisani BRP, Lima MED, Silva SMP, Schettini VH, Chargas HA, Santos jr FM, Batista Jr JM, Valverde AL. Absolute configuration reassignment of natural products: An overview of the last decade. J. Braz. Chem. Soc. 2021;32(8): 1499-1518. DOI: 10.21577/0103-5053.20210079

Speciale I, Notaro A, Garcia-Vello P, Di Lorenzo F, Armiento S, Molinaro A, Marchetti R, Silipo A, Castro C. Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: A hitchhiker's guide. Carbohydrate Polymers. 2022;277:(118885). DOI: 10.1016/j.carbpol.2021.118885

Bubb, WA. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts Magn. Reason Part A: An Edu. J. 2003;19(1):1-19. DOI: 10.1002/cmr.a.10080

Duus JØ, Gotfredsen CH, Bock K. Carbohydrate structural determination by NMR spectroscopy: Modern methods and limitations. Chem. Rev. 2000;100(12): 4589–4614. DOI:10.1021/cr990302n

Łowicki D, Buda S, Mlynarski J. Nuclear Magnetic Resonance: NMR of carbohydrates. Editor(s): Wojcik J, Kamienska-Trela K. The Royal Society of Chemistry. 2013; 42:383-419.

DOI: 10.1039/9781782622758

Kapaev RR, Egorova KS, Toukach PhV. Carbohydrate structure generalization scheme for database-driven simulation of experimental observables, such as NMR chemical shifts. Journal of Chemical Information and Modeling. 2014;54(9): 2594–2611. DOI: 10.1021/ci500267u

Buda S. Nawój M, Mlynarski J. Chapter Four - Recent advances in NMR studies of carbohydrates. Editor(s): Graham A. Webb. Annual Reports on NMR Spectroscopy, 2016;89:185-223.

DOI: 10.1016/bs.arnmr.2016.04.002

Fontana C, Widmalm G. Primary structure of glycans by NMR spectroscopy. Chem Rev. 2023;123(3):1040-1102.

del Carmen Fernández-Alonso M, Díaz D, Berbis MÁ, Marcelo F, Cañada J, Jiménez-Barbero J. Protein-carbohydrate interactions studied by NMR: From molecular recognition to drug design. Curr Protein Pept Sci. 2012;13(8):816-30. DOI: 10.2174/138920312804871175

Klukowski P, Schubert M. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics. Bioinformatics. 2019;35(2):293–300.

DOI: 10.1093/bioinformatics/bty465

Ben-Tal Y, Boaler PB, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide, Progress in Nuclear Magnetic Resonance Spectroscopy. 2022;129:28-106. DOI: org/10.1016/j.pnmrs.2022.01.001

Russo Krauss I, Merlino A, Vergara A, Sica F. An overview of biological macromolecule crystallization. Int. J. Mol. Sci. 2013;14:11643–11691. DOI: 10.3390/ijms140611643

Mc Pherson A. Introduction to protein crystallization. Methods. 2004;34:254–265.

DOI: 10.1016/j.ymeth.2004.03.019

Govada L, Chayen NE. Choosing the method of crystallization to obtain optimal results. Crystals. 2019;9:106.

DOI: org/10.3390/cryst9020106

Thakral NK, Zanon RL, Kelly RC Thakral S. Applications of powder X-ray diffraction in small molecule pharmaceuticals: Achievements and aspirations. J. Pharm Sci. 2018;107(12):2969-2982.

DOI: 10.1016/j.xphs.2018.08.010

Spiliopoulou M, Valmas A, Triandafillidis DP, Kosinas C, Fitch A, Karavassili, F, Margiolaki I. Applications of X-ray powder diffraction in protein crystallography and drug screening. Crystals. 2020;10(2): 54.

DOI: 10.3390/cryst10020054

Marcott C, Havel H, Overend J, Moscovitz A. Vibrational circular dichroism and individual chiral centers. An example from the sugars. J. Am. Chem. Soc. 1978; 100(22):7088-7089. DOI: 10.1021/ja00490a064

Petrovic AG, Bose PK, Polavarapu PL. Vibrational circular dichroism of carbohydrate films formed from aqueous solutions. Carbohydrate Research. 2004; 339(16):2713–2720. DOI: 10.1016/j.carres.2004.09.014

Barron, Laurence D. ‘The development of biomolecular raman optical activity spectroscopy’. 2015;223 – 253.

DOI: 10.3233/BSI-150113

Li XC, Ferreira D, Ding Y. Determination of absolute configuration of natural products: Theoretical calculation of electronic circular dichroism as a tool. Curr. Org. Chem. 2010;14(16):1678- 1697.

DOI: 10.2174/138527210792927717