Syntheses and X-ray Structure of N-(Benzothiazol-2-yl)-3-chlorobenzamide

Salif Sow

Department of Chemistry, University Cheikh Anta Diop Dakar 10700, Sénégal.

Felix Odame

Department of Basic Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana and Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa.

Ngoné Diouf

Department of Chemistry, University Cheikh Anta Diop Dakar 10700, Sénégal.

Ibrahima Elhadj Thiam *

Department of Chemistry, University Cheikh Anta Diop Dakar 10700, Sénégal.

Ousmane Diouf

Department of Chemistry, University Cheikh Anta Diop Dakar 10700, Sénégal.

Javier Ellena

Departamento de Química - Facultad de Ciencias Naturales y Exactas Universidad del Valle Apartado 25360 Santiago de Cali Colombia and bInstituto de Física de São Carlos IFSC Universidade de São Paulo USP São Carlos SP, Brazil.

Zenixole R. Tshentu

Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa.

Mohamed Gaye

Department of Chemistry, University Cheikh Anta Diop Dakar 10700, Sénégal.

*Author to whom correspondence should be addressed.


Abstract

The reaction of 3-chloro-benzoyl chloride and 2-aminobenzothiazole in the presence of potassium thiocyanate yielded a yellowish solid C15H10ClN3OS2 (1). Reaction of 1 with cobalt chloride yield a yellowish solid C14H11ClN2O2S (2) which gives crystal suitable for X-ray analyses. The compounds were characterized by elemental analyses FTIR spectroscopy and melting point measurement. Compound 2 crystallizes in the triclinic space group Pī with the following parameters: a = 7.0299(2) Å b = 7.0466(2) Å c = 14.5490(2) Å a = 103.844(3)° β = 92.929(2)° g = 107.291(3) V = 662.33(4) Å3 Z= 2 R1 = 0.030 wR2 = 0.034. The asymmetric unit of (2) consists of one molecule in which the 3-chloro phenyl moiety and the benzothiazole-2-yl moiety form a dihedral angle of 6.417(4)°. An intramolecular O—H···O hydrogen bond occurs. In the crystal O—H···N and N—H···O hydrogen bonds link the molecules forming layers parallel to the ac plane.

Keywords: Cobalt (II) 3-chloro-benzoyl chloride 2-aminobenzothiazole dethiocyanation FTIR, X-ray diffraction


How to Cite

Sow, Salif, Felix Odame, Ngoné Diouf, Ibrahima Elhadj Thiam, Ousmane Diouf, Javier Ellena, Zenixole R. Tshentu, and Mohamed Gaye. 2024. “Syntheses and X-Ray Structure of N-(Benzothiazol-2-Yl)-3-Chlorobenzamide”. International Research Journal of Pure and Applied Chemistry 25 (4):1-9. https://doi.org/10.9734/irjpac/2024/v25i4861.

Downloads

Download data is not yet available.

References

Aydın F, Aykaç D, Ünver H, İskeleli NO. Synthesis spectral properties and structure of new novel 3,3′-dibenzoyl-1,1′-(propan-1,3-diyl)-bisthiourea. J. Chem. Crystallogr. 2012;42(4):381–387. Available:https://doi.org/10.1007/s10870-011-0258-5

Samb I, Gaye N, Sylla-Gueye R, Thiam EI, Gaye M, Retailleau P. Crystal structure of N,N'-[(ethane-1,2-diyl) bis (azanediylcarbonothioyl)] bis (benzamide). Acta Crystallogr. 2019:E75(5):642–645. Available:https://doi.org/10.1107/S205698901900495X

Kuchekar SR, Bhumkar SD, Aher HR, Han SH. separation of platinum(IV) from pharmaceuticals using p-methylphenyl thiourea by solvent extraction: separation from palladium(II) nickel (II). Anal. Chem. Lett. 2019;9(6):775–788. Available:https://doi.org/10.1080/22297928.2020.1712236

Uçak ŞŞ, Aydın A. A novel thiourea derivative for preconcentration of copper(II) nickel(II) cadmium(II) lead(II) and iron(II) from seawater samples for flame atomic absorption spectrophotometry. Mar. Pollut. Bull. 2022;180:113787. Available:https://doi.org/10.1016/j.marpolbul.2022.113787

Huang X, Jin K, Zhang R, Gong Y, Zeng J, Zhang R, Liu Y, Xue J. Selective solvent extraction of Cu(II) from aqueous solutions using an acyl-based thiourea: Extraction study and DFT analysis of reaction mechanism. Hydrometallurgy 2024;223: 106226. Available:https://doi.org/10.1016/j.hydromet.2023.106226

Antypenko L, Meyer F, Kholodniak O, Sadykova Z, Jirásková T, Troianova A, Buhaiova V, Cao S, Kovalenko S, Gabe L-A, Steffens KG. Novel acyl thiourea derivatives: Synthesis antifungal activity gene toxicity drug-like and molecular docking screening. Arch. Pharm. 2019;352 (2):1800275. Available:https://doi.org/10.1002/ardp.201800275

Doğan ŞD, Gündüz MG, Doğan H, Krishna VS, Lherbet C, Sriram D. Design and synthesis of thiourea-based derivatives as mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors. Eur. J. Med. Chem. 2020;199: 112402. Available:https://doi.org/10.1016/j.ejmech.2020.112402

Arafa WAA, Ghoneim AA, Mourad AK. N-Naphthoyl Thiourea derivatives: An efficient ultrasonic-assisted synthesis reaction and in vitro anticancer evaluations. ACS Omega 2022;7(7):6210–6222.

Available:https://doi.org/10.1021/acsomega.1c06718

Krishna Reddy RC, Rasheed S, Subba Rao D, Adam S, Venkata Rami Reddy Y, Raju C. N. New urea and thiourea derivatives of piperazine doped with febuxostat: Synthesis and evaluation of anti-TMV and antimicrobial activities. Sci. World J. 2013; 2013:682603. Available:https://doi.org/10.1155/2013/682603

Thakur AS, Deshmukh R, Jha AK, Kumar PS. Molecular docking study and anticonvulsant activity of synthesized 4-((4,6-dimethyl-6H-1, 3-thiazin-2-yl) phenylsulfonyl) urea/ thiourea derivatives. J. King Saud Univ. Sci. 2018;30(3):330–336. Available:https://doi.org/10.1016/j.jksus.2016.12.006

Naz S, Zahoor M, Umar MN, Alghamdi S, Sahibzada MUK, UlBari W. Synthesis characterization and pharmacological evaluation of thiourea derivatives Open Chem. 2020;18(1):764–777.

Available:https://doi.org/10.1515/chem-2020-0139

Han Z-Y, Wu W-Y, Chen F-L, Guan X-L, Fu X-H, Wan R. Design synthesis crystal structure and insecticidal evaluation of novel arylpyrazole derivatives containing cyhalothroyl thiourea moiety. Phosphorus Sulfur Silicon Relat. Elem. 2017;192(8):911–918. Available:https://doi.org/10.1080/10426507.2017.1292272

Arslan H, Duran N, Borekci G, Koray Ozer C, Akbay C. Antimicrobial activity of some thiourea derivatives and their nickel and copper complexes. Molecules 2009;14(1):519–527. Available:https://doi.org/10.3390/molecules14010519

Cunha S, Macedo F, Costa GAN, Rodrigues MT, Verde RBV, de Souza Neta LC, Vencato I, Lariucci C, Sá FP. Antimicrobial activity and structural study of disubstituted thiourea derivatives. Monatsh. Chem. 2007;138(5):511–516. Available:https://doi.org/10.1007/s00706-007-0600-y

Binzet G, Külcü N, Flörke U, Arslan H. Synthesis, and characterization of Cu(II) and Ni(II) complexes of some 4-bromo-N-(di(alkyl/aryl) carbamothioyl) benzamide derivatives. J. Coord. Chem. 2009;62(21):3454–3462.

Available:https://doi.org/10.1080/00958970903082200

Kavak G, Özbey S, Bi̇nzet G, Külcü N. Synthesis and single crystal structure analysis of three novel benzoylthiourea derivatives. Turk. J. Chem. 2009;33(6):857-868. Available:https://doi.org/10.3906/kim-0901-1

Vivas-Reyes R, Espinosa-Fuentes E, Forigua J, Arias A, Gaitán R, Arguello E. Theoretical study of a series of N-(N-propyl)-N′-(para-R-benzoyl)-thioureas with trans [Pt(Py)2Cl2] through chemistry reactivity descriptors based on density functional theory. J. Mol. Struct.: THEOCHEM 2008;862(1):92–97.

Available:https://doi.org/10.1016/j.theochem.2008.04.036

Binzet G. Kavak G. Külcü N. Özbey S. Flörke U, Arslan H. Synthesis and characterization of novel thiourea derivatives and their nickel and copper complexes. J. Chem. 2013;2013: 536562. Available:https://doi.org/10.1155/2013/536562

Faye N, Mbow B, Gaye AA, Ndoye C, Diop M, Excoffier G, Gaye M. Syntheses & antioxidant activity of 1-isonicotinoyl-4-phenylthiosemicarbazide and crystal structures of N-phenyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine hydrochloride and 4-Phenyl-3-(pyridin-4-yl)-1H-1,2,4-triazole-5(4H)-thione derived from 1-isonicotinoyl-4-phenylthiosemicarbazide. Earthline J. Chem. Sci. 2022;9(2):189–208. Available:https://doi.org/10.34198/ejcs.9223.189208

Kalhor M, Salehifar M, Nikokar I. Synthesis characterization and antibacterial activities of some novel N,N′-disubstituted thiourea 2-amino thiazole and imidazole-2-thione derivatives. Med. Chem. Res. 2014;23(6):2947–2954.

Available:https://doi.org/10.1007/s00044-013-0883-y

Odame F, Hosten E, Krause J, Isaacs M, Hoppe H, Khanye SD, Sayed Y, Frost C, Lobb K, Tshentu Z. Synthesis characterization and biological activity of some dithiourea derivatives. Acta Chim. Slovenica 2020;67(3):764–777.

Available:https://doi.org/10.17344/acsi.2019.5689

Odame F, Woodcock G, Hosten EC, Lobb K, Tshentu ZR. A novel gold(I)-mediated intramolecular transamidation of benzoyl thiourea derivatives to form benzamides via dethiocyanation. J. Organomet. Chem. 2020;922:121359.

Available:https://doi.org/10.1016/j.jorganchem.2020.121359

Sheldrick GM. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015;A71(1):3–8. Available:https://doi.org/10.1107/S2053273314026370

Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71(1):3–8.

Available:https://doi.org/10.1107/S2053229614024218

Farrugia LJ. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012;45(4):849–854. Available:https://doi.org/10.1107/S0021889812029111

González DLN, Saeed A, Shabir G, Flörke U, Erben MF. Conformational and crystal structure of acyl thiourea compounds: The case of the simple (2,2-dimethyl-propionyl) thiourea derivative. J. Mol. Struct. 2020;1215:128227.

Available:https://doi.org/10.1016/j.molstruc.2020.128227

Moradi P, Kikhavani T, Abbasi Tyula Y. A new samarium complex of 13-bis (pyridin-3-ylmethyl) thiourea on boehmite nanoparticles as a practical and recyclable nanocatalyst for the selective synthesis of tetrazoles. Sci. Rep. 2023;13(1):5902. Available:https://doi.org/10.1038/s41598-023-33109-y

Alcívar León CD, Echeverría GA, Piro OE, Ulic SE, Jios JL, Luna Tapia CA, Mera Guzmán MF. New thiourea and urea derivatives containing trifluoromethyl- and bis-triflouromethyl-4H-chromen-3-yl substituents. Mol. Phys. 2019;117(3):368–381. Available:https://doi.org/10.1080/00268976.2018.1514132

Gumus I, Solmaz U, Binzet G, Keskin E, Arslan B, Arslan H. Supramolecular self-assembly of new thiourea derivatives directed by intermolecular hydrogen bonds and weak interactions: Crystal structures and Hirshfeld surface analysis. Res. Chem. Intermed. 2019;45(2):169–198. Available:https://doi.org/10.1007/s11164-018-3596-5

Avşar G, Arslan H, Haupt H-J, Külcü N. Crystal Structure of cis-bis(N,N-dimethyl-N’-benzoylthioureato)palladium(II). Turk. J. Chem. 2003;27(3):281–286. Available:https://journals.tubitak.gov.tr/chem/vol27/iss3/1